Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Melanie Rademeyer

School of Chemistry, University of KwaZuluNatal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa

Correspondence e-mail:
rademeyerm@ukzn.ac.za

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.049$
$w R$ factor $=0.113$
Data-to-parameter ratio $=35.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
trans-Cyclohexane-1,4-diammonium dibromide

A structure consisting of alternating organic and inorganic layers is exhibited by the title compound, $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{Br}^{-}$. The ammonium groups and bromide anions interact via hydrogen bonds to form a two-dimensional hydrogen-bond network.

Comment

The crystal structure of (I) was determined as part of an ongoing investigation of the structural characteristics and noncovalent interactions of organic-inorganic hybrid salts. The structure of the corresponding chloride salt, trans-1,4diaminocyclohexane dihydrochloride, (II), has been reported (Dunitz \& Strickler, 1966), but the chloride and bromide salts are not isostructural.

(I)

The asymmetric unit of (I) consists of half a trans-1,4diammoniocyclohexane cation and one bromide anion; the cation lies on an inversion centre. Fig. 1 illustrates the molecular geometry and atomic labelling scheme.

Figure 1
The molecular structure of (I) showing the atomic numbering scheme and displacement ellipsoids at the 50% probability level [symmetry operator: (A) $-x,-y,-z$)] (ORTEP-3; Farrugia, 1997).

Received 26 October 2006
Accepted 10 November 2006

Figure 2
(a) Packing diagram for (I), viewed down the a axis. Hydrogen bonding interactions are shown as dotted lines. (b) View down the b axis. (Mercury; Macrae et al., 2006).

Figure 3
Hydrogen-bonding interactions (Mercury; Macrae et al., 2006). [Symmetry codes: (i) $\mathrm{x}+\frac{1}{2}, y,-z+\frac{1}{2}$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2}$, z.]

As illustrated in Fig. 2, the crystal structure is composed of alternating organic and inorganic layers, parallel to the (001) plane of the unit cell. The ammonium groups and bromide anions constitute the inorganic layer, while the cyclohexane rings, which adopt a chair conformation, form the organic layer. Viewed down the a axis, cations in neighbouring layers display alternating tilt directions (Fig. 2). However, within a layer, neighbouring tilted cations alternate in orientation (Fig. 3). Interestingly, the structure reported for (II) is, in general, very similar to that of (I); however, the cations in a particular layer all have the same orientation.

In the inorganic layer the ammonium groups and bromide anions interact via $\mathrm{N}^{+}-\mathrm{H} \cdots \mathrm{Br}^{-}$charge-assisted hydrogen bonds, with each ammonium group forming three classical hydrogen bonds to three different bromide anions. Each bromide anion, in turn, interacts with three different ammonium groups. A two-dimensional hydrogen-bonding network,
parallel to the $a b$ plane, is formed, consisting of hydrogenbonded rings of the type $R_{6}^{3}(9)$ (Fig. 3). Hydrogen-bonding parameters are listed in Table 1.

Experimental

trans-1,4-Diaminocyclohexane dihydrobromide was prepared by the dropwise addition of $\mathrm{HBr}(48 \%$, Fluka) to a solution of trans-1,4diaminocyclohexane ($+99 \%$, Fluka, 0.421 g) in 35 ml of chloroform (99%, Saarchem) at room temperature. The solution was allowed to evaporate at room temperature, and a precipitate formed after four days. The precipitate was filtered and recrystallized from distilled water at room temperature over a period of five weeks, yielding good quality crystals.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{Br}^{-}$
$M_{r}=276.03$
Orthorhombic, Pbca
$a=7.4264$ (6) A
$b=8.9074$ (6) \AA
$c=15.8018$ (14) A
$V=1045.29(14) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.754 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=7.70 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.40 \times 0.30 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford Diffraction Excalibur2 diffractometer
ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.074, T_{\text {max }}=0.216$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.113$
$S=1.08$
1683 reflections
47 parameters
H -atom parameters constrained
8858 measured reflections
1683 independent reflections 1118 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\theta_{\text {max }}=31.9^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0375 P)^{2}\right. \\
& +2.6029 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.66 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.76 \text { e } \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.049 \text { (2) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Br}^{1}{ }^{\mathrm{i}}$	0.89	2.46	$3.308(3)$	159
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Br}^{\mathrm{ii}}$	0.89	2.45	$3.317(3)$	166
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{Br}^{\mathrm{iii}}$	0.89	2.46	$3.343(3)$	173

Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x, y+1, z$; (iii) $-x-\frac{1}{2}, y+\frac{1}{2}, z$.

All H atoms were placed in calculated positions, with methylene $\mathrm{C}-\mathrm{H}$ distances of $0.97 \AA$, a methine $\mathrm{C}-\mathrm{H}$ distance of $0.98 \AA$, and $\mathrm{N}-\mathrm{H}$ distances of $0.89 \AA$, and were refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{N})$ of the parent atom.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

organic papers

The author acknowledges funding received for this work from the University of KwaZulu-Natal Research Office and the National Research Foundation (GUN:2054350).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Dunitz, J. D. \& Strickler, P. (1966). Helv. Chim. Acta, 49, 2502-2505.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Version 1.171.29.9. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

